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TRANSIENT  CONFORMAL MAPPING METHOD FOR TWO-DIMENSIONAL 

SOLIDIFICATION OF FLOWING LIQUID ONTO A COLD  SURFACE 

by M a r v i n  E. Goldstein  and  Robert Siege1 

Lewis  Research  Center 

SUMMARY 

A transient  conformal  mapping  method  has  been  developed  to  determine  the  config- 
uration of a frozen  region  formed  during  two-dimensional  solidification.  The  transient 
shapes of this  region  are found by mapping  the  solidified  region  into a potential  plane  and 
then  determining  the  time  varying  conformal  transformations  between  the  potential  and 
physical  planes.  The  method is applied  to  the  case  where  solidification is taking  place 
on a cold  plate of finite  width  immersed  in flowing  liquid  having a bulk  temperature 
above  the  freezing  point.  During  the  transient,  the  combined  energy  resulting  from  con- 
vection  to  the  interface  and  latent  heat of fusion is conducted  through  the  region  from  the 
moving interface  to  the  plate.  The  transient  results are compared  with a simpler  quasi- 
steady  solution  obtained by letting  the  growth of the  frozen  region  pass  instantaneously 
through a succession of steady-state  profile  shapes. 

INTRODUCTION 

The  present  report is concerned  with  developing a method  for  solving  two- 
dimensional  transient  solidification  problems  with a convective  boundary  condition at the 
moving  interface. If a flowing warm  liquid is placed  in  contact  with a cold  surface  which 
is at a temperature  below  the  freezing  point of the  liquid, a frozen  region will grow on 
the  plate.  The  flowing  liquid  supplies  energy by convection  to  the  interface  formed be- 
tween  the  solid  and  liquid  phases.  This  energy  along  with  the  latent  heat of fusion  re- 
leased  during  the  transient  growth  must  be  removed by conduction  through  the  solidified 
region  to  the  cooled  plate.  There is also  internal  energy  removed as the  frozen  mate- 
rial is subcooled  below its freezing point.  The  temperature at the  solid-liquid  interface 
is specified  throughout  the  transient  growth by the  fact  that  the  interface is within a 



fraction of a degree of being  isothermal at the  equilibrium  freezing  temperature  even 
when the interface is moving. 

To  obtain a solution  to  the  transient  solidification  problem, it is necessary  to  solve 
the  heat  conduction  equation  within  the  solidifying  layer in order  to  determine  the  growth 
of the  solidified  region. A shape of this  region  must  be found  which  will result  in an 
isothermal  interface  and at the  same  time  allow  the  convective,  fusion,  and  subcooling 
energies  to  be  conducted  through  the  frozen  layer  to  the  cooled  plate.  Since  the rate of 
freezing is in  general  nonuniform  along  the  interface,  the  temperature  derivative (i. e., 
the  heat  flow)  in  the  solid  normal  to  the  interface is an unknown function of position  and 
time.  This is contrasted  with  the  condition at steady  state  where  the only  heat flow at 
the  interface is by convection from  the  liquid.  The  convection is specified in the  prob- 
lem, so  in the  steady-state  case  the  normal  derivative  at  the  interface is known. In the 
transient case the  interface  boundary  condition wil l  be a differential  equation  relating  the 
temperature  derivative at the  interface  to  the  local  rate of freezing. An inherent diffi- 
culty  in  the  solution of freezing  problems is the  nonlinearity  introduced by the  fact  that 
the  interface is moving. As a result,  it is not possible  to  utilize  superposition  to con- 
struct  solutions  for  time  varying  conditions. 

In the  present  problem  the  energy  for  subcooling  solidified  material below the  freez- 
ing  point  will  be  neglected.  This is a common  assumption  in  freezing  problems  since 
the  subcooling  energy is usually  small  compared with the  heat of fusion  that is liberated 
at the interface and  then  conducted  through  the  frozen  region.  For  freezing  in a flowing 
liquid  the  convective  energy  supplied  must  also  be  conducted  from  the  interface  through 
the  frozen  region,  and  this  can be a large  heat flow compared  with  the  energy  for  sub- 
cooling.  Hence, it is usually  the  case  that  practically all of the  energy flow  in the  fro- 
zen  region arises from  that  entering  the  region at the  solid-liquid  interface.  There are 
only some  limited  cases,  for  example,  where  cryogenic  coolants are used,  for which the 
subcooling  can  become  important.  The  solutions  in  references 1 and 2 show  that  the  sub- 
cooling  can  be  neglected  within  several  percent  error if the  quantity C (t - tw)/X is 
less than about 1. 

P f  

With  heat  capacity  neglected,  the  heat  flow  in  the  solidified  region is governed by 
the  two-dimensional  steady-state  heat  conduction  equation  (Laplace  equation)  which  must 
be  satisfied at each  instant  within  the  frozen  region. A numerical  solution is difficult 
since  the  shape of the  frozen  region is unknown and  changing  with  time.  To  solve  La- 
place's  equation  in  two  dimensions,  conformal  mapping  can  be  utilized.  The  mapping 
method wil l  be  developed  here  for a transient  situation,  that is, the mapping  functions 
will  be  allowed  to  vary  with  time.  The  method  will  be  demonstrated by analyzing  the 
solidification  on a cooled  plate of finite  width  immersed in  flowing  liquid.  The transient 
results  will  be  compared with quasi-steady  results  obtained by having the  frozen  region 
pass  thraugh a series of instantaneous  steady-state  frozen  configurations  during  the 
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transient  growth.  The  steady-state  profiles which form  the  basis  for  the  quasi-steady 
solution are the  same as those  in  reference 3 where  the  steady-state  mapping  method 
was  developed  for  two-dimensional  solidification. 

There  has  been little analytical  work  done  for  two-dimensional  solidification. One 
example is reference 4 where  an  analysis is given  for  freezing  inside a square  prism 
with  the  liquid  always at the  fusion  temperature.  The  transient  frozen-layer  configura- 
tions  were  determined  approximately. In this  instance  the  liquid  was  initially at the 
freezing  temperature so there  was no convective  energy  transfer  to  the  frozen  interface. 
References 5 to-8  consider  steady  and  transient  solidified  layers in flow  channels.  Since 
the  channels are of symmetric  cross  section, being  either a tube or gap  between  paral- 
lel plates,  there is only  one  cross-sectional  coordinate. In references 5 to  7, the  fro- 
zen  layers are two-dimensional as they  change  in  thickness  along  the  channel  length. 
The  analyses,  however,  neglect axial conduction  within  the  layers s o  that  the  solidifica- 
tion  portion of the  analysis is locally  one-dimensional. 

SYMBOLS 

A dimensionless half width of plate, - ___ 

A- value of A  for  times  before start of transient 

ha - tf 
k tf - tw 

An 
a half width of plate 

b  time  dependent  parameter  in  mapping 

binitial 

'n 

cP 
E complete  elliptic  integral of second kind; quantity  defined by eq. (38) 

time  dependent  coefficients  in  mapping 

initial  value of b at start of transient 

function of p and  b  defined  in eq. (27) 

specific  heat of solid 

h  heat  transfer  coefficient  from  flowing  liquid  to  frozen  interface 

Io 
Jo 

Kn 
k thermal  conductivity of solidified  material 

frozen  region  in  Z-plane 

frozen  region  in  W-plane 

K  complete  elliptic  integral of first kind 

definite  integrals  defined  in eq. (53) 
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tf 

tW 
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x, y 

x, Y 
Z 

% 
Pn 
r 

Y 

N 

V 
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0 

frozen  region in [-plane 

unit  outward  normal 

integer,  index  in eq. (57) 

heat  flow rate through  frozen  layer  per unit length of plate 

dimensionless  position  vectorj AFs/a 

position  vector  to  frozen  interface 

dimensionless  frozen-layer-liquid  interface 

frozen-layer-liquid  interface 

dimensionless  temperature, (t - tw)/(tf - tw) 

temperature 

freezing  temperature 

liquid  temperature 

surface  temperature of cold  plate 

intermediate  mapping  plane 

analytic  function, cp + i+ 

dimensionless  coordinates,  A 5 ,  A 1 
a a  

Cartesian  coordinates  in  physical  plane 

dimensionless  complex  physical  plane, X + i Y  

time  dependent  coefficients in mapping  eq. (23) 

time  dependent  coefficients  defined  in eq. (26) 

frozen  region  in  &plane 

k tf - tw length  scale  parameter, - - 
h t l  - tf 

dimensionless  gradient  operator, - V a 
A (a~+ ax iz)' 

h 2 (tl - tf)2 
dimensionless  time. - e 
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t ime 

latent  heat of fusion 

density of solidified  material 

real part  of W 

imaginary  part of W 

intermediate  mapping  plane 

argument  in S2-plane 

Subscript: 

s on frozen  interface 

Superscripts: 

ss steady  state 
- 

(overbar)  complex  conjugate 

GENERAL TRANSIENT  ANALYSIS 

To help  fix  the  general  ideas of the  analysis,  the following  physical  problem  will be 
considered  during  the  development of the  analytical method.  Consider a liquid at con- 
stant  temperature t flowing over  an  infinitely  long flat plate of width  2a as shown  in 
figure 1. Suppose  that  both  vertical  sides of the  plate are insulated  and  that  the  plate 
surface is maintained at a uniform  temperature tw which is below the  freezing  temper- 
ature tf of the  liquid.  Then a frozen  region will grow on the  plate  until  the  shape  and 
s ize  of the  region are such  that  the  heat  transferred  to  the  frozen  interface by the flow- 
ing  liquid is exactly  balanced by the  heat  transferred  through  the  frozen  region  to  the 
plate. If the  direction of flow of the  liquid is parallel   to  the long  dimension of the  plate, 
then  the  heat  transfer  coefficient  h  on  the  surface of the  frozen  layer  can  be  assumed 
essentially  constant. A procedure  will  be  developed  here  that  predicts  the  transient 
shape  and  size of this  frozen  layer as it grows  from  some  initial state to its f i n a l  equi- 
librium  configuration. 

I 

Before  proceeding  with  the  analysis in detail, it is helpful to briefly  outline  some 
aspects of the  general method. Tn reference 3 a conformal  mapping  method  was  devised 
to  determine  the  shapes of steady  two-dimensional  frozen  regions. By applying  those 
ideas to the  present  situation, it is found that  the  physical  coordinates of the  frozen re- 
gion  can  be  obtained at each  instant  in  time by carrying out the  integral 

Z =  f < d W  
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where 5 is a temperature  derivative  function 

and W is the  complex  potential  having  negative  temperature as the real part  and lines 
of constant + in  the  direction of heat  flow as the  imaginary  part,  that is, 

W = - T + i +  

The  functions ( and W must be related  to  each  other  before  the  integration  for  deter- 
mining Z can  be  performed. 

For  freezing  with  convective  heat  transfer at the  interface,  the  boundary  conditions 
provide  information  about  the  shape of the  image of the  frozen  region  in  the [ and W 
complex  planes.  For  example,  the  moving  interface is always  an  isotherm at the  freez- 
ing  temperature,  and  hence it will be a vertical  line  in  the W-plane.  The  frozen  region 
is then  drawn in the [- and  W-planes,  some of the  region  boundaries,  such as the mov- 
ing  interface in the  [-plane,  being unknown functions of time.  Then  to  relate [ and W, 
both  the [ and W regions  are mapped  into a common  fixed  intermediate  region  in a 
plane  designated as the  %plane.  The  mappings will involve unknown functions of time 
since  the  region in the  &plane is chosen  to be nontime-varying. 

The  integral  for  determining Z is then  carried  out  in  terms of the  common vari- 
able 52. Thus 

Z(S2) = [(a) - (52) d o  1 dS2 
dW 

The  resulting  expression  for Z contains  the unknown time  functions  resulting  from  the 
mappings of the  time  varying  frozen  region in the <- and  W-planes  into  the  fixed  region 
in  the  &plane.  These unknown functions  are found by substituting  this  expression  for 
Z (evaluated at the moving  boundary)  into  the  heat  flow  boundary  condition at the  moving 
interface. 

Each of the  previous  steps  will now be carr ied out. First consider  the  boundary 
conditions  in  detail  since  these  will  be  needed  to  represent  the  frozen  region  in  the  tem- 
perature  derivative  and  potential  planes. 
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Specification  of  Physical  Boundary  Conditions 

Since  the  problem is two-dimensional, let x and  y  denote  coordinates of an  arbi- 
t r a r y  point  in some  fixed  cross-sectional  plane  with  the  origin of the  coordinate  system 
as shown  in  figure 1 .  Let s denote  the  two-dimensional  free  surface of the  frozen 
layer  in  this  plane  and ii denote  the  unit  normal  to s directed  outward  from  the  frozen 
layer.  The  position  vector of an  arbi t rary point of s is denoted by i?'. 

liquid, t2, h 

-7""- 

At the surface s of the  frozen  layer,  the  temperature is constant  and  equal  to  the 
freezing  temperature tf of the  liquid.  The  local  rate at which  heat of fusion is being 
liberated at the  freezing  interface  per  unit  area is equal  to 

~ a;, 
pXn . - 

a e  

Heat is being  supplied  to  the  frozen  interface by convective  heat  transfer  from  the  warm 
liquid at the rate 

per  unit  interface  area.  Both of the  heat  fluxes in expressions (1) and (2) must  be  bal- 
anced by a conduction  heat  flux  away  from  the  interface  given by 

L 

l& vt (3) 
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In view of these  considerations,  the  boundary  conditions at the  freezing  interface  can be 
written as 

aFs 
a e  

kc Vt - h(tl - tf) = pXii - 

The  remaining  boundary  conditions are along  the  plane y = 0 at the  surface of the 
cooled  plate. For 8 > 0 the  plate is maintained  at  constant  temperature.  Thus 

t(x, 0, e) = tw - a < x < a   ( 5 4  

For the  insulated  region  on  either  side of the  plate  there is no heat  flow  which  implies 

a t  "=o y = O  and x < - a ,  x > a  
aY 

It is convenient  to  introduce  the  following  dimensionless  quantities: 

t - tw 

tf - tw 
T = -  

X 
r 

a a '- a 
X = A - ,  Y = A ' ,  R - A -  S 

v = - v  N a 
A 
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-c 

T(RS, 0) = 1 

ao 

T(X, 0,O) = 0 - A < X < A  

aT "=o Y = O  and X < - A ,   X > A  
ay 

Specif icat ion  of  Boundary  Condit ions in Terms of  Complex  Quantit ies 

It has.been  shown (refs. 1 and 2) that  the  effect of the  heat  capacity of the  frozen 
layer is negligible  in  most  instances  since  the  subcooling  energy is small  compared  with 
the  latent  heat  removed  from  the moving interface. Hence, for  the  purposes of this 
analysis  the  heat  capacity  will  be  neglected;  therefore,  the  heat flow  in  the  frozen  region 
is governed by the  Laplace  equation.  Thus  the  temperature is a harmonic  function of po- 
sition within the  frozen  layer,  Let q denote  the  harmonic  function -T, and let +b be 
the  harmonic  conjugate  to q. The  complex  variable  X + i Y  will  be  denoted by Z,  and 
the  complex  variable q + i+b will  be  denoted by W. The  symbol Io wil l  be used  to 
designate  the  instantaneous  dimensionless  region  occupied by the  frozen  material in the 
Z-plane. 

Within the  frozen  layer  the  potential  function W is a function of time 0 and a 
holomorphic  function of position Z. Then at each  fixed  time, 0 = OC, the  function 

W(Z, 0 = OC) for all Z E Io 
C 

is a holomorphic  function of the  complex  variable Z. In view of this  the  notation aW/aZ 
will  be  used  to  signify  the  ordinary  derivative dW(Z, 0 = Oc)/dZ. If the  convention is 
adopted  whereby  the real and  imaginary  parts of a complex  number are identified re- 
spectively  with  the  X  and Y components of a vector,  then 

- i3T . aT V T = - + l -  
ax ay 

The  Cauchy-Riemann  equation a+b/aX = aT/aY implies 
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a w = " + 1 - = - - + , -  aT . a+ aT . aT 
az ax ax ax ay 

Hence, 

Equation (8) will now be  used  to  express  the  boundary  condition,  equation (6b),  in t e rms  
of complex  quantities  that  will be  needed  in  the  conformal  mapping  method. 

Since  the  surface S of the  frozen  layer is isothermal,  the  temperature  gradient 
must  be  normal  to it. Since  the  temperature is increasing  in  the  direction of the  outward 
drawn  normal,  the  unit  normal  vector is given by 

Using  equation (8) yields 

The first term  in  equation (6b) can be written as 

A1 t houg h 

- aT aT V T = - + i -  
ax ay 

in  carrying out the dot product  the i is an ordinary  unit  vector and,  hence,  the  number 
-1 does not appear  in  front of (aT/aY) . Then 2 *  

*For two vectors  written as complex  numbers, z1 z2 = (x1 + iyl) - (x2 + iy2) 
= x 1 2  x + y1y2 = Re (x1 + iy1)(x2 - iy2) = Re z1z2. 
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The  second  term  in  equation (6b) becomes 

evaluated on the  interface. 
muat ions (10) and (11) are then  inserted  into  the  boundary  condition,  equation  (6b), 

to  give 

l + R e - - =  az az ao aw l%l 
Mapping of Frozen  Region in Z-Plane into Rectangle in W-Plane 

The  boundary  conditions on the  frozen  region  provide  information  from  which  the 
shape of the  region in the  potential W-plane can  be found. The  instantaneous  frozen re- 
gion Io is shown  in  the  physical  Z-plane  in figure 2. It is clear  from  the  boundary 
conditions  (eqs. (sa) and ("a)) specifying  the  temperatures at the  frozen  interface  and 
plate  that,  since  the real par t  of W is -T, 

Figure 2. - Dimensionless  physical plane, 2 = X + iY. 
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-T(X, Y, 0) = Re W(Z, 0) = -1 
n 

Z E FAB 

-T(X, Y, 0) = Re W(Z, 0) = 0 
n 

Z E EDC 

where  the  notation  FAB  represents  the set of points  along  the  boundary FAB. The 
boundary  condition (eq.  (7b)) together  with  the  Cauchy-Riemann  condition 

c 

shows  that at any  instant of time - 
Z E FE 

" a +  - 0 
ax 

Z E C B  
n 

Hence, since IC/ is the  imaginary  part of W, 

/Im W(Z, 0) = const Z E FE 
n 

9m W(Z, 01 = const Z E CB 
n 

Q 

Figure 3. - Potential plane, W = (0 t i#. 
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Equations (13) to (16) show  that at each  instant of time  the  region Io in the  physical 
plane  maps  into a rectangular  region J in  the W-plane as shown  in  figure 3. The 
height of the  rectangle Jo varies  with  time  since  the  height is related  to  the  heat  flow 
through  the  frozen  region  (this will be  shown  in  connection  with  eq. (59)) and  must  be  de- 
termined  from  the  solution to the  problem.  The  symmetry of the  rectangle  with  respect 
to  the cp-axis follows  from  the  symmetry of the  problem  with  respect  to  the  imaginary 
axis  in  the  physical  Z-plane. 

0 

Mapping of Frozen  Region in Z-Plane  in to   <-Plane 

Now consider  the  complex  variable [ defined by 

az [ = -  
aw 

Then, it follows  from  the  relation  for aW/aZ immediately  preceding  equation (8) that 

which  together  with  the  temperature  derivative  boundary  conditions  can  be  used  to  repre- 
sent  the  frozen  region  in  the  c-plane. Along the  insulated  portion of the  surface,  equa- 
tion (7b) shows  that 

An - = o  
c 
1 

Z E E F  

This is shown  in  figure 4. It follows  from  the  constant  temperature  boundary  condition 
(eq. (7a))  along  the  plate  that 

aT - =  0 
ax 

Hence, 

Re - = o  1 

for -A < X < A 

Z E EDC 
n 
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B C E  F 

I A  

Figure 4. - Temperature  derivative  plane, 5 = -5 + i (ax dYY1 

The  symmetry of the  problem  shows  that 

aT "=o 
ax 

for X =  0 

Hence, 

1 

c 
n 

Re - = 0  Z E DA 

Since 

we conclude from these  conditions  that 
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Y M  < = 0  

& < = O  

This is indicated  in  figure 4. Equation (9) and  the  definition (eq. (17)) show  that  the  out- 
ward  drawn  normal  to  the  surface FAB is in the - 5  direction.  These  considerations 
are sufficient  to  show  that  the  region Io in the  physical  plane  must  map  into  the  region 
Lo in  the  <-plane  shown  in  figure 4. The  shape of the  curve BAF and  the  length of the 
line BCEF depend on the  magnitudes of the  temperature  derivatives  and  hence  the  heat 
flow  in  the  solid at the moving interface.  These  quantities  vary  with  time  and are not 
known at this stage of the  solution. 

n 

n 

n 

Integral   Relat ing W and 5 to  Physical   Coordinates 

In order  to  obtain  the  frozen  layer  shape, it is convenient to  introduce a parametric 
(intermediate)  complex  variable 8 which  will  be  used  to relate W  and 5 .  Consider 
the  region I? in  the  8-plane  depicted  in  figure 5. This  region is chosen  to not change 
with time  and is always bounded by a unit semicircle  and  the real axis. As will  be  seen 
later, however, it is necessary  to  allow  the  length of the  line DE to  vary  with  time. 
Suppose  that  the  mapping - W is known which takes at every  instant of time  the  fixed 
region I? in  the  &plane  into  the  time  variable  region Jo of the W-plane  in the man- 
ner  indicated by figures 5 and 3. Also  suppose  that  the  mapping 8 - < which  takes I? 

n 

Figure 5. - Intermediate a-plane. 
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into  the  variable  region Lo in the  <-plane .in the  manner  indicated by figures 5 and 4 is 
known. The  locations of the  various  points in the  physical  plane  can  then  be found  in 
t e rms  of the  parametric  variable s2 from  the  formula  obtained by integrating  equa- 
tion (17), which is 

Z = /< e ds2 + function of 0 
as2 

Tn particular by letting 52 be  along  the  semicircle in figure 5, the  shape of the  freezing 
surface is found at each  instant of time.  Since W is a known function of 52, and Z is 
known as a function of 52 from  equation  (19), it is possible  to  compute  the  temperature 
at each point of the  physical  plane.  Thus  the  solution  to  the  problem  can  be  obtained by 
finding  the  mappings 52 - W and 52 - [ at  each  instant of time  and  then  performing  the 
integration  in  equation (19). 

Determination of the Mapping R -, W 

To  determine  this  mapping, it is convenient  to  introduce  an  intermediate  variable U 
and  to  map  the  rectangular  region J0 in the  W-plane  into  the  upper half of the  U-plane 
in  the  manner  indicated in figure 6. An application of the  Schwarz-Christoffel  trans- 
formation  shows  that  this  mapping is defined by 

D C B A F  E D 
l I I I 

-1 -b b 1 
I 

Figure 6. - Intermediate  U-plane. 
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The  parameter b appearing  in  this  mapping is a function of time. 
The  mapping  which  takes  the  semicircular  region I' in  the s2-plane into  the  upper 

half of the U-plane  in  the manner  indicated in the  figures is defined by 

b( l  + Q2) 

d ( 1  + s22)2 - (1 - b2)(1 - s22)2 

s 2 G r  

Substituting  equation (21) into  equation (20) to  eliminate U reveals  that  the  mapping 
which  takes  into J0 in  the  manner  indicated by figures 5 and  3 is defined by 

aw-  aw au- - 2 
as2 au as2 

s2 E r (22) 

K ( d z ) d ( l  + s22)2 - (1 - b2)(1 - s22)2 

Determination of the Mapping R -5 

The  mapping  which  takes  the  region r into Lo is, of course,  holomorphic l11 the 
interior of since  there are no  singularities within the  region. An examination of f i g -  
u r e s  4 and 5 indicates  that  this  mapping  may  be  expected  to  be  continuous  on  the bound- 
aries of I? since  there are no  singularities  that  occur  there. Hence, the  mapping  has 
an analytic  continuation  to a region  which  includes  the  boundaries of r. Since  the  func- 
tion 52 - p is real on the real axis of the  &plane, it is known from  the  Schwarz re- 
flection  principle  that  the  function 52 - 5 can be analytically  continued  to  the  region  that 
is the  mirror  image of I? with respect  to  the real axis. Hence, 5 can  be  extended  ana- 
lytically  to a function  that is holomorphic  in  the  interior of a unit  circle  in  the Q-plane 
and is continuous on the  boundary of the circle. In view of this,  the  function s2 - 5 has 
a Taylor series expansion  about  the  origin of the  %plane  that  converges  in a circle  that 
contains  the  closure of r. Since {(a) is real for 8 on the real axis in the  %plane, it 
follows  that  the  coefficients  in  the series expansion  must  be real. Since [(a) is pure 
imaginary for 52 on the  imaginary  axis  in  the  %plane, it follows  (since  even  powers of 
i would  be real) that only odd powers of s2 can  appear in this  expansion. Hence, [ can 
be  represented by the  convergent series 

[(a, 0) = -K ( iz )  2 ctnSl2"+l 
n=O 
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for  all 52 in the  closure of r with an real for n = 0, 1, 2,  3, . . . . Each  coefficient 
an in  this  expansion is, in general, a function of time. Thus  the  mapping W - 5 will 
be completely  determined if the  sequence of real functions of t ime { an } can be  found. 

To  better  understand  equation (23), introduce  polar  coordinates I W I and w for  the 
W-plane  by letting 

Then  equation (23) becomes 

[(S2,0) = - K ( d l  - b2)  an1521 2n+l  ei(2n+l)w 
\ ’ n=O 

= -K( dl - b2 ) an\  [COS (2n + 1)w + i s in  (2n + 1)u] 
\ / n=O 

Since on the  solid-liquid  interface I 52 I = 1, this  becomes on the  interface 

Thus  the  interface of unknown shape  in  figure 4 has  been  expressed as a series of cosine 
and  sine  harmonics. 

The  functions cyn will  be found by requiring  that [ satisfy  the  boundary  condition 
(eq.  (12)) on the  free  surface FAB, that is, on the  unit  semicircle in the  &plane. By 
introducing  the  definition of [ given by equation  (17),  the  boundary  condition  (eq.  (12)) 
can be written as 

n 

52 G FAB 
n 

Using polar  coordinates, on the  boundary 52 = eiw, resul ts  in equation  (24a)  becoming 
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Integrat ion  to  Obtain  Physical   Coordinates in Terms of R 

Before  the an can  be  found by use of equation  (24b), it is necessary  to  calculate 
the  complex  variable Z in  equation  (24a)  in  terms of and  the  coefficients in the ex- 
pansion (eq. (23)) in order  to  obtain  the a Z / a 0  term. If the  origin of the  coordinate 
system is chosen in the  physical  plane  to  be  at  the  point D, then  equation (19) shows  that 

where A is the  dimensionless  length in figure 2. Substituting  equations (22) and (23) 
yields 

Putting y = S-2 yields 2 

Upon carrying out the  indicated  integration, it is found  that (see  the  appendix  for  de- 
tails of the  integration) 

Z ( a ,  0) - A = In [ " d z  + (1 + a2) + (1 - b 2 )(1 - 0 
2 n=O 

n=l  r=O n= 1 

where 
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X(S2) =- (1 + a2) 2 - (1 - b2)(1 - S22)2 

and  the are defined  recursively by 

n -  + (1 - b2)](2n - 1) 

b  (n - l ) n  4 

n -  [1+(1-  b 21 ) (2r + 1) (r + 1) n P,-1 - - P+-- 4 + 1  O s r s n - 2  
b2 r r J 

and  the Cn are defined  in  terms of the p: by 

c " 1 
O - b  r 

It is necessary  to  impose  the  restriction  that  the  distance DC remain  constant  (and 
n 

equal  to A) with  time.  To  accomplish  this,  notice  that  point D in  figure 6 is the  point at 
infinity.  This  can  only  occur when the  denominator of equation (21) is zero. Now equa- 
ting  the  denominator  to  zero  gives a quadratic  equation  for S2' which is solved  to  show 
that at point D 

b2 

Then  the  point D maps  into  the point 

\ b J  
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in  the S2 plane,  where  the + sign is chosen so that D will  be in the  upper half  plane. 
This is also equivalent  to 

as can  be shown by multiplying  both  the  numerator  and  denominator by 

Since D is at the  origin of the  physical  plane,  it  follows  that 

= o  

Substituting  equations (28) and (29) in  equation (25a) yields after some  algebraic  manipu- 
lat ion 

n= 1 n=O 

Substituting this  into  equation  (25a)  yields 

1 2 i 1 -  b2 

03 n- 1 

n= 1 r=O 
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To reduce  the  double series in  equation (31) to a more  convenient  single  sum,  notice  that 
(see ref. 9, p. 57) 

m 00 00 

r=O n=O r=O p=r+l  

Hence  upon  defining Ar  by 

00 

p=r+l  
r = 0 ,  1, 2, . . . 

equation (31) becomes 

r 
bAo - A 

z(n, 0) = 

1 

1 2)/1 - b2 

which is the  expression for Z that  will be used  to  substitute  into  the  boundary  condition 

(es.  (24b)). 

Relation for an Explicitly in Terms of the An 

The  expression for Z given by equation (33) is in t e rms  of the An while  the  ex- 
pression for ( given by equation (23) is in te rms  of the an. Hence, before  substituting , 

equation (23) into  boundary  condition (24b), it is desirable  to  express  the an in te rms  
of the An. This  can  be  done  through  the  use of equation  (32).  To  this  end,  equation (27) 
is used  to  give 
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In the  definitions of p (eq.  (26)), the p1 does not appear,  that is, p i  = 0. Then 1  1 

Now use  the definition of An from  equation (32) to  give 

00 

anCn = - 1 [ao - (Ao + A1) - (1 - b2)(Ao - A1i 
n=O b 

Then by the  additional  use of equation (32) to  obtain Ao, equation (30) becomes 

which is solved  for cyo to  obtain 

(bAo - A)b 
+ A o  + A1 + (1 - b  )(AO - A1) 2 

Do = 
I 

(34) 

In i l  - b2 

Now it follows from  definitions (26) and (32) that  for r Z 1 

From  equations (32) and (26) the  two  summations are found to   be 

23 



" 

m ca 

M m 

p=r+2 p=r 

1 (2r + 1)[1 + (1 - b2)1 
- Ar-1 - - - 

2 + 

b r  b r(r + 1) 4 

Substituting  into  equation (35) gives 

- [ l + ( l -  b 2 1  ) (21- + 1) 1 -  r 1  
Ar+l - 

b2 r + l  "r+l 
b2  b2(r + 1) r + l  Ar + r + 1 b2r 

" 

"r 

r [1 + (1 - b2)] (2r + 1) 

b2 r(r + l ) b  

" 
r 

r + l  
" 

2 r + 1 Ar- 1 

Cancelling t e r m s  and  solving for ar gives 

cyr = b (r + l)Ar+l + 1 + (1 - b2)l(2r + l)Ar + b rAr-l 2 2 r = 1, 2, . . . (36) 

Upon combining  equations (34) and (36), the an's can  be  written as 

an = (?) [1 - (-l)J(l - b2j] (n + 1 - -)Antlmj j + Eb6 n = 0 ,  1, 2, . . . 
3 "9 0 

j=O 2 

where 

bAo - A 
E =  

In ,'1 - b2 
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the  syrr lbol (3) denotes  the  binomial  coefficients  whose  values are 1, 2, and 1 for 
j = 0, 1, and 2, respectively,  and 6 is the  Kronecker  delta.  Equation (37) allows  us 
to  replace  the  variables an in  equation (23) by the  variables An and so, in view of 
equation  (33),  to  completely  formulate  the  boundary  condition (eq.  (24b)) in  terms of the 

An' 

n, 0 

Terms in Interface  Boundary  Condition Needed to  Determine  the An and b 

The  interface  boundary  condition a s  given by equation (24a) or (24b) will  provide a 
differential  equation  which  determines  the An. Each of the  terms  to  be substituted  into 
this  condition  will now be derived. 

The  term /?e 5 - . - In order  to  insert  an expression  for a Z / a o  into  the bound- (- ::) 
a r y  condition  given by equations  (24),  equation (33) is differentiated  with  respect  to  time. 
After  collecting  terms,  this  gives 

(bAo - A)bb 

+ [ (1 - b2)(ln d z r  + AOb In fi + ".] ldG"+-( l ,  
In 

where  the  dot  denotes  differentiation  with  respect  to  time. By using  equation  (38),  this 
equation  can  also  be  written as 
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1 
- (-l)J(l - b2)] n2j 

+ E In I b d E  + (1 + ) + (1 - b2)(1 - fi2) 2 
I 7 

1 2 dl - b2 J 

(39) 

where it was found by differentiating  equation (38) that 

bb(bAo - A) Aob + bAo 

2 (  d z J + 1 n d z  (1 - b ) In 

E =  (40) 

It follows  from  equation (25b) that on the  interface  where S2 = eiw for 0 5 w 5 TI 

x(eiw) = (I + e 2iwf - (1 - b2)(l - e 2 i q ”  

= 4e2iw[cos2 w + (1 - b2) sin2 w] = 4e2iw(1 - b2 sin2 w )  

Hence, 

dX(eiw) = 2e i w ) /  1 - b 2 sin 2 w (41) 

which  will  be  used  in  equation (39). On the  interface  the In te rm in equation (39)  be- 
comes 
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b d G  + (1 + a2) .+ (1 - b2)(1 - a 

r l  1 
= io + In 

L 

I b i l - b 2 s i n 2 w + c o s w - i ( l - b ) s i n w l  - ""_I_ 2 

1 
[b2(1 - b  sin w )  + cos2 w + 2b cos w + (1 - b2)2 sin2 w 2 2  

= In -. __ 1'" 1 - b  2 

= In 

-(1 - b ) sin w 2 1 
r 
I b c o s o +  __ -. . ) / 1 - b 2 s i n 2 w  
I I 

1 f 1  - b2 

+ i  w + t a n  

-l 

r 1 
-(1 - b ) s in  w 2 

L 
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Combining equations (39), (41), and (42) shows  that 

03 2 
+ bb An x(P>(-l) j e i[2(n+j)-l]w 

n=O j = O  

Equation (23) shows  that  the  expression  for 5 on  the  interface is 

\ n=O 

By taking  the  complex  conjugate of equation (44), multiplying by equation  (43), and then 
taking  the real part,  an  expression is obtained  for  the  term 

28 



which  will  be  subsequently  substituted  into  boundary  condition (24b) 

I C2=eiw - - -  *{-%x {T ( 1  - b ) n=O - 1  

2 l - b  sin w 

+ bb 2 2 Anak z ( f ) ( - l ) j  COS + n - k - 1)u ]  

n=O k=O j =O 

- - .  2 
+ Anak ( f )  [1 - (-1)'(1 - b2)]cos  [2(n + j - k - 1)u]} 

n=O  k=O j =O 

The  term I ((eiw, 0) I .  - An expression  for  the  values of < on the  interface is given 
by equation (44). However, the  absolute  value of this  expression  must be  taken.  This is 
difficult by ordinary  means  since it would require  squaring  the real and  imaginary  parts 
which are infinite series. As a preliminary  step  to  finding  the  absolute  value  notice  that, 
if  

- 

then  in view of the Cauchy product  rule (ref. 9, p.  162) squaring both sides  shows  that 

Q) m a3 M n 
anZn = 2 bnZn  b  m  Zm = 2 Zn  bkbn-k 

n=O n=O m 3 n=O k=O 
~ 
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Hence,  equating  like  powers of Z shows  that 

n 
n = 0 ,  1 ,  2, . . . 

k=O 

This set of equations  can  be  solved  recursively  to  determine  the bn in  terms of the 

an. 
the  boundary  condition  (eq. (24b)). 

Equation (46) will be  applied  to  find a series  expansion  for ] <(eiw, 0) 1 to be  used  in 

To this  end,  notice  that  equation (44) implies 

and 

Hence, if we let 

then 

I 

Using  equation (46) shows  that  the jn are determined  in  terms of the an by 

5 Pkin-k = 
k=O 

(49) 
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When equation (47) is multiplied by equation (48), all imaginary  parts  cancel out  and the 
following is obtained: 

\ ' n=O  m=O 

Equation (50) is the  expression  for  the  term  which is to  be substituted  into  the  right  side 
of the  boundary  condition (eq. (24b)). 

Substitution into Boundary  Condition  and  Integration over Cosine  Harmonics 

Equations (45) and (50) a re   t o  be substituted  into  equation  (24b).  This will give a 
relation  containing An and  b  which are functions of time.  The  equation will also con- 
tain  various  sine  and  cosine  harmonics of w. In a way analogous  to  obtaining  the  coef- 
ficients in an  ordinary  Fourier  series  expansion,  the  equation wil l  be multiplied  through 
by cos 2pw and  integrated  over  the  interface. By letting  p = 0, 1, 2, 3, . . . , a se t  
of simultaneous  ordinary  differential  equations will be  obtained  for  the  unknowns An 
and b. 

Before  carrying  out  this  procedure, a few preliminary  relations are developed. By 
differentiation it is found  that, after considerable  simplification, 

f r 1) b  cos w -(1 - b2) sin w 
aw 

and 

It follows by integrating by parts  that  for  p = 0, 1, 2, . . . 

31 



= 

1 cos [Z(n-p)w] cos [2(n + p)w] + 

cos [2(n - p)w] 
d w  + 1 cos [2(n + p)w d j  (51) 
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Equations (45) and (50) are now substituted  into  the  boundary  condition (eq.  (24b)). 
The  result is multiplied  through  by cos 2pw for  p = 0, 1, 2, 3, . . . and  integrated 
between w = 0 and s/2. Using the  resul ts  in equation (51) leads  to   the following  infinite 
set of first-order  ordinary  differential  equations  for  the  functions An and b: 

where  for  n = 0, 1, 2,  . . . the Kn are defined by 

Equations (40) and (38) show  that  the  derivative of E with respect  to  t ime is 

. LAo + i o b  E b i  
E =  + 

In d? 1 - b  In d? 1 - b  1 - b2 

This is substituted  into  equation (52) to  eliminate E, and  the  result is 
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1 + 26n' 
[2(k + i) + 1 Kk+p + 2(k - p) + 1 

Now if we set 

K 

[Z(kyi:+ 1 + 2(k - k-p p) + 1 l l p  = 0, 1, 2, . . . and 
(55) I k = 0,  A ,  +2, . . . 

H(1) 
k, p E Kk+p + Kk-p J 

and 
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It 

r = 1 ,  2, 3 and n, k, p = O ,  1, 2, . . . (56) 

iJ 

then  equation (54) can  be put in the  form 

Ok(<d  Jg)k,p + " n=O 2 AnJi:)k,  p)] + 5 'n  Ok Jk:k, p 

a3 

n=O  k=O 
k=O 

This  infinite set of first-order  differential  equations  completely  determines  the unknown 
functions of t ime, b  and  An, for n = 0, 1, 2, 3, . . . and so in view of equations (33) 
and (22) completely  determines  the  solution  to  the  problem. 

Coordinates  of  the  Sol id-Liquid  Interface 

If equations (41) and (42) are substituted  in  equation (33) and  the real and  imaginary 
par ts  of the  resulting  expression are taken,  the following parametric  equations  for  the 
shape of the  freezing  surface are obtained: 
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n=O 

r 1 1 
bAO - A Ib cos w + dl - b2 sin2 w I + I 

' In c l  1 - b  41 - b2 

I on 

i 2  
~- 

Ys = 2 1 - b  sin2 w x An sin (2n + 1 ) w  
n=O 

J 0 5 W 5 E  
2 '  

+ -(I - b 2 ) s in  w )I J 
b 7 1 - b sin w + cos w 

The  evaluation of the  set of differential  equations  to  obtain  the An and  b as func- 
tions of time  and  the  evaluation of the  transient  interface  shapes will be given  subse- 
quently. 

Heat Flow Through  Frozen  Region 

An expression  for  the  heat  flow  per  unit  plate  length  through  the  frozen  layer  can  be 
obtained  from  the  temperature  gradient at the  cold  plate, 

Q = /  k c d x  
plate a~ 

or  in  dimensionless  form 

It has  been  pointed  out in connection  with  equation (8) that  aT/aY = &)/ax. Hence, 
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It can be seen  from  figure 3 that qC - +,, = qB - +A. Using the  coordinates  in  the U- 
plane (see f ig .  6) gives 

Substituting  equation (20) for aW/aU gives 

Some  special  cases  will now be  considered.  These  will  aid  in  the  interpretation of 
the  transient  results  to  be  obtained later. 

STEADY-STATE SOLUTION 

The  steady-state  frozen  layer  shapes  for  the  geometry  considered  here  have  been 
already  given in reference 3. They  can  be  obtained  from  the  present  analysis by letting 
all the  t ime dependent  coefficients An be  zero.  Then  from  equation (58) 

3 
V S S  A 

In d 2  1 - b  

l n f l  - b2 

The  steady-state  profiles are thus a function of A  and b. The  parameter  A  contains 
the  physical  quantities  governing  the  frozen  configuration 
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and  hence a relation is needed  between  the  mapping  parameter  b  and A. To obtain  this 
relation,  note  that at steady state, 

(1 + GP, 0) 

b and are zero  so  equation (57) reduces  to 

03 

P , k + p  
26P?o = 0 

n=O 

With all the An = 0, equation (37) gives 

Ab CYo = - 

Then  from  equation (49) 

an = 0 for n I 1 

Equation (61) reduces  to  the  following  single  relation for p = 0 

2Ab 2 

s o  that  the  relation  between  b  and A at steady  state is 

A = -  

b K(d?) 

This is the  same as the  result  obtained  in  reference 3. This  relation  has  been  plotted in 
figure 7. For a given A as determined by the  imposed  temperatures  and  heat  transfer 
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I 1"- L" 
04 . 5  . 6  . 7  . 8  . 9  1. 0 

Mapping  parameter, b 

(a)  Range of b, 0 . 4  to  0.96. 

2.4 

2.0 t I 

. 4 '  ~~ 

. 90   . 91   . 92  .93 
I I I" "I.. 1 1- 

.94  .95  .96  .97  .98  .99 1.00 
Mapping  parameter. b 

(b)  Range of b. 0.90 to 1.00. 

Figure 7. - Steady-state  relation  between  cooling  parameter A and  mapping 
parameter b  leq. (64)). 
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i 
1.6- 

1.2 I I I I I I I I 1 
,990  ,991  ,992  ,993  ,994  .995  ,996  ,997  ,998  ,999 1.000 

Mapping  parameter, b 

( c )  Range of b. 0.990 t o  1.000. 

Figure 7. - Concluded. 

coefficient,  b  can  then  be found. Equations (60) are evaluated  for  various  values of  b, 
and  these  contours are given in figure 8. Hence, by using  figures 7 and 8 the  steady- 
state  contour of the  frozen  region  can be  quickly  found for a given A. 

It follows from equation (59) that  the  heat flow through  the  layer is only a function of 
b. In fact,  for both transient  and  steady  conditions 

This  relation  between Q/2k(tf - tw) and b is plotted  in figure 9. 
To summarize  for  the  steady-state  solution:  for  given  physical  conditions  compute 

the  value of A, and  then  determine  b  from  figure 7. Figures 8 and  9  then  give  the  con- 
tour of the  frozen  region  and  the  heat flow through it. 
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0 . 15 .30  .45 .60 .75 .90 1.05 
Dimensionless  coordinate.  xla 

(a)  Range of b, 0.99 to 1.0. 

0 . 3  .6 . 9  1.2 1.5 1.8 2.1 2.4 
Dimensionless  coordinate,  xla 

(b) Range  of b, 0.75 t o  0.990. 

Figure 8. - Steady-state  frozen  layer  profiles as a func t i on  of mapping  parameter b (eq. (60)). 

Mapping 
parameter, 

b 
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5.0 

(c)  Range of b. 0.40 t o  0. 75. 

Figure 8. - Concluded. 

42 



- I I . .  "U 
-3 . 4  . 5  . 6  . 7  . a  . 9   1 . 0  "1; Mapping  parameter, b 
N 
x 

(a1 Range of b, 0.4  to 1.0. 
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.90  .91 .92 .93  .94  .95  .96  .97 .98 .99  1.00 

Mapping  parameter, b 

(b) Range of b, 0.90 t o  1.00. 

Figure 9. - Dimensionless  heat  f low  through  f rozen  layer as  a func t i on  of mapping  parameter b (eq. (6511. 
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QUASI-STEADY SOLUTION 

Analys is  

If all the An are  zero,   then  the only cyn that is not zero is cyo. In this  case,  the 
mapping  function  (eq. (23)) reduces  to 

On the  frozen  interface  where 52 = eiw 

This is a semicircle which is the  shape of the  mapping  for  steady state. Thus, if all the 
An are   zero  and  the b is allowed  to vary with  time,  the  transient  solution  will  pass  at 
each  instant  through a steady-state  configuration  corresponding  to  the  instantaneous b. 
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This is a quasi-steady  solution. What is required is to  find  the  variation of b  with  time 
for a given set of imposed  conditions.  Then  figures  8  and 9 can  be  used  to  obtain  the 
instantaneous  quasi-steady  configuration  and  heat  conducted  through  the  frozen  region. 

The  time  variation of b is found from  equation (57) by letting all the An = 0. This 
gives 

A 

Since  only a0 and Po are nonzero for An = 0, their  values  from  equations (62) and (63) 
are substituted  to  give 

h(-Ab) E J(l) 2nAb + 2iT 

4: 1 - b2 
0, 0,o = 

In l - b  In d7 l - b  K ( G )  

From  equation (56) 

1 
Jo, (l) 0,o = x(!)(-l)j b - l ) j  - (1 - b2)] Hj!\ + Ho, (0 )  

j=O 

or 

The H's a r e  found from  equation (55) giving 

rY 

J(l) - b 2K-1 + (2 - b )2K0 + 2  2 2bL 
0.0.0 - I 2K0 

I ,  

l n f l  - b2 

Substituting J(l) and E from  equation (38) into  equation (66) gives 
0 ,090  
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” 

- db  2A2b 

do (1 - b 2 ) ( l n i z ) ”  

= 2n Ab + 1 

In d7 1 - b  K (”) 
By virtue of equation (53) the Kn a r e  only  functions of  b. Also  K-l is seen  to  equal 
K1. Then  the  variables  in  equation (67) can  be  separated  to  give 

db = dO 
iT Ab -L 

1 

In 1 - b  ’ K ( i Z )  

Now note  that 

K1 =[n’2 1 - 2 s in  2 w dw = (l - -$K(b) + - 2 E(b) 
b2 

where 

E(b) I 

is the  complete  elliptic  integral of the  second kind. Also 
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KO = dw = K(b) 

These  relations are substituted  into  equation (68). The  resulting  equation is simplified 
and  then  integrated  from 0 = 0 to  0 to  give 

U initial 

The  dummy  variable  k  has  been  introduced on the left to  avoid  confusion  with  the  run- 
ning variable b. 

The  integration  starts at binitial corresponding  to  any  initial  profile as shown  in 
figure 8 resulting  from  imposed  conditions A-.  At time  zero  the  imposed  conditions are 
changed from A- to  A. The  denominator of the  integrand  goes  to  zero  and  hence 
0 - 03 when b is such  that 

A = -  In 4 2  l - b  

But  this is exactly  the  condition for the  steady-state  layer  corresponding  to A as given 
by equation (64). When the  cold  plate is initially at tf and there  is no frozen  layer,  then 

binitial = '. 
then  the  integral  for  any  initial  b can be  found by subtraction,  that is, 

If in  equation (69) the  integral is carr ied out from a lower  limit of unity Jb, then 

= 4 - 4 binitid. Hence by having integrated  from 1 to  arbitrary  values of 
binitial 

b, the  quasi-steady  time  can  be found for a layer to grow  from  any  initial  state  to  another 
state. The  growth rate will of course  be a function of A. 
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Results from Quasi-Steady  Solution 

Figure 10 shows  the  variation of b as a function of dimensionless  time  for  the 
quasi-steady  solution.  Curves are  given for  various  values of A that are imposed at 
the beginning of the  transient  and  maintained  throughout  the  transient  growth. As t ime 
proceeds,  the  b  reaches a constant  value  corresponding  to  the  steady-state  frozen  pro- 
file for  the  particular  value of A that is imposed. 

The  sets  of curves  in  figures 7 t o  10 can be used as follows to  obtain  the  quasi- 
steady  solution. First consider  the case where  initially  the  wall is at the  freezing  tem- 
perature  tw = tf. There  will  be no frozen  layer on the  plate  and A- = 00 since tf - t, 
is in  the  denominator of A. When A- - 03, figure 7 shows  that  b -c 1. This is consist- 
ent  with  figure 8 which  shows  that  for  b = 1 there  is no  frozen  layer on the  plate.  To 
initiate  the  transient, at t ime 0 = 0' the  physical  conditions are changed so that 

ha t Z  - tf _~ 
k tf - tw 

goes  from A- = to  the  constant  value of A that is maintained  throughout  the  tran- 
sient.  For  that  particular A the  variation of b  with 0 is found from  figure 10. Then 
the  time  dependent  profiles  and  heat flow during  the  transient are found from  figures 8 
and 9. 

Now consider  the  case  where A- is finite, that is, there  is initially a steady-state 
layer on the  plate.  Corresponding  to  the  value A- there  is a binitial that  can  be found 
from  figure 7, and  an  initial  frozen  profile  from  figure 8. To start the  transient, a new 
value of A is imposed  and  the  transient  variation of b  will  follow  the  curve  in  figure 10 
corresponding  to  the  imposed A. To  find  the  value of b  after a given  time  lapse,  the 
abscissa in figure 10 must  be  interpreted as being  the  actual 0 that  has  passed  since 
the  initiation of the  transient  plus  the  value of 0 corresponding  to binitial as obtained 
on the  curve  for A in figure 10. With the  b known as a function of time  from  the  onset 
of the  transient,  the  heat flow  and  profile  shape  can  be found as a function of t ime  f rom 
figures 9 and 8. 
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so lut ion leq. (691); binit ial  = 1.0. 
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COMPUTATION OF TRANSIENT  SOLIDIFICATION 

Having examined  the  steady  and  quasi-steady  solutions,  the  general  results will now 
be  considered.  The  final  result of the  transient  analysis is given by equation (57). This 
represents a set of equations,  each  equation  corresponding  to a different  value of p. 
The  mapping  parameter  b  and  the  coefficients An a r e  unknown functions of time  which 
must  be  found  to  evaluate  the  profiles  given by equations (58). Since  the set of equa- 
tions (57) involve  the  time  derivatives 1; and in (n = 0, l, 2, . . . ), these  are  sirnulta- 
neous  first-order  ordinary  differential  equations.  Equations (58) for the Xs and Ys 
coordinates of the  interface  each  contain  an  infinite  series. When the An a r e  evaluated, 
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they  decrease  in size as n is increased so that  the series can  be  terminated after a fi- 
nite  number of terms.  

To  find  the b(O) and  An(@),  the set of equations (57) is truncated at a.value of p 
equal  to 1 plus  the  number of An desired. For example, if only  b  and Ao, . . . , A3 
are retained,  the  only  equations of the set which are retained are those  for which 

m 

p = 0, 1, . . . , 4. The series x would extend  only to n = 3. This set of five  equa- 
n=O 

tions is solved  using  the  Runge-Kutta  method  for  simultaneous  first-order  differential 
equations.  Since  the series in An has  been  truncated,  the  values of b  and An may 
not  be  accurate.  A  larger  number of te rms  is then  included,  say Ao, . . . , A8 and 
p = 0, 1, . . . , 9. The first four An are then  checked against the An found by using 
only  five  simultaneous  equations.  This  procedure is continued  until  increasing  the  num- 
ber of equations  does not change  the  values of b(O) and  An(0).  Also  there  must  be a 
large enough number of An so that  the series in  equations (58) have  converged. 

ferential  equations, s o  the  present  results are limited  to  cases  that  converged  with 19 or  
less  An. It was  found  that a larger  number of An  would  be  required when the  transient 
solidification  started  from a thin  initial  layer. It will  be  shown  subsequently,  however, 
that  the  quasi-steady  solution  works  very well for  thin  initial  layers s o  that  the  present 
theory  does  provide a means  for  computing  transients  starting  from  an  initial  condition 
of any  steady-state  frozen  region or a bare  plate. 

The  numerical  computer  program  that  was  utilized  could  solve 20 simultaneous dif- 

Now consider  in  more  detail how equation (57) is written  out  for  each  p  value.  All 
of the  quantities  appearing  in  these  equations  such as cy, E, and J must  be  replaced by 
their  appropriate  expressions  in  terms of b and An. The  expression  for E is given 
by equation (38), and  the  expressions  for  the cyn by equation (37). With the cyn known, 
equation (49) is used  to  find  each of the pn. Each pn can  be  found  successively by 
writing out equation (49) for  successive  values of n  starting  with  n = 0. For example 
with  n = 0, po = cyo; then  for  n = 1, p p + p p - cy s o  that having  found po the p1 
can  be found. Continuing,  letting  n = 2 gives an equation  that  can  be  solved  for p2 

A 0. 

0. -2 -0. , . A  

0 1   1 0 -  1 A 

The J(r) given by equation (56) are only  functions of b. They  depend on the H 
functions  that  are  defined in equations (55 ) .  These  depend on the Kn which are  the  defi- 
nite  integrals  defined  in  equation (53). It was  necessary  to  develop a table of Kn values 
for  various  n  and  b by carrying out the  definite  integrals  numerically. 

"9 k, P 

To obtain a transient  solidification  solution,  initial  conditions  must be specified.  The 
transients  computed  here  are all started  from an initial  steady-state  layer.  The  magni- 
tude of the  physical  quantity 
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ha tl - tf 
" 

k tf - tw 

that  establishes  this initial layer is called A-. From  figure 7 the  value of  A- corre- 
sponds  to a value of b  which  will  be  termed binitial. The  initial  shape of the  solidified 
region  corresponding  to  this  value of binitid can  be  found  from  figure 8. At t ime 0' 
a new physical  condition  specified by the  value of A, is imposed  and  this  remains  fixed 
throughout  the  transient.  For  an  initial  steady-state  layer, all the An = 0 at O = O+. 
Hence  the  solution of equation (57) proceeds  from  the  following  initial  conditions: 

= binit id (corresponding  to  initial  steady  profile) 

An = 0 

0 < 0  

k tf - tw 0 > 0  

As time  becomes  large,  the  solidified  layer  approaches a steady  state.  The  steady- 
state  value of b is completely  determined by the  value of A from  the  curves of fig- 
u re  7, and  the  steady-state  profile  can  be found at this  value of b by use of figure 8. 

When the  variations  with  time of b  and  the An a r e  known, equations (58) a re   used  
to  compute  the  transient  shapes of the  ice  layer.  The  transient  heat flow  through  the 
layer is found from  equation (59). 

RESULTS AND  DISCUSSION OF TRANSIENT  SOLUTION 

Solidif icat ion  Computed  from  Transient  Solut ion 

Several  groups of transient  growth  curves are shown  in  figures 11 and 12  to  demon- 
strate  the  nature of the  transient  solution. In figure 11, before  the  transients  begin 
there is an  initial  steady-state  layer  that  has  been  established by having the  cooling  pa- 
rameter  equal  to A- = l. 47 (corresponding  to  the  initial  condition binitial = 0.995).  
Then  the  cooling  parameter is suddenly  changed  to  another  value,  this  being  A = 0 . 5  for 
figure ll(a). The  change in A could  physically  correspond  to  changing  the  liquid  heat 
transfer  coefficient,  the  liquid  temperature,  or  the  temperature of the  cooled  plate.  The 
frozen  layer  then  grows  and  the  profiles are shown  for  various  values of the  dimension- 
less time  until a new steady state is achieved. On figures  ll(b)  and (c) the  values of A 
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Figure 11. - Effect   of   d i f ferent  cool ing  rates  on  sol id i f icat ion  start ing  f rom  same  in i t ia l   layer;   b in i t ia l  = 0.995; 
A- = 1.47. 
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Figure 11. - Continued. 
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(c )  A = 0.2. 

Figure 11. - Concluded. 
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Dimensionless  coordinate,  xla 

(a) b in i t ia l  = 0.98; A- = 1.04. 

Figure 12. -Trans ient   so l id i f icat ion  s tar t ing  f rom  three  d i f ferent   in i t ia l   layers  and  go ing to same f inal  layer; A = 0.1. 
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(C)  b in i t ia l  = 0.8; A-  = 0.366. 

Figure 12. - Concluded. 

are  respectively 0 .3  and 0.2. A smaller  value of A corresponds  to  increased  cooling 
(increased tf - tw) or a decreased  convection of energy  h(tl - tf) to  the  frozen  interface. 
Consequently,  for  smaller A the  steady-state  layer (at 0 - m) is larger.  

Tn figure 12  the  final  cooling  parameter A is equal  to 0.1 for all three  cases  so 
that  the  steady-state  layers are all the  same.  The  transients  begin,  however,  from 
various  initial  layers  corresponding  to  cooling  parameters  prior  to  the  transient A- of 
1.04, 0.560, and 0.366. 

The  results  in  figures 11 and 12 give  the  reader a quantitative  idea of the  rate  at  
which  the  solidification  occurs.  The rate is of course  most  rapid at early  t imes when 
the  frozen  region  has  the  least  thickness  and  hence  the  least  resistance  to  heat flowing 
through it. As the  frozen  region  becomes  large  compared  with  the  width of the  cooled 
plate (x/a = 1) the  frozen  shape  becomes  circular,  tending  toward  the  axisymmetric  solu- 
tion  where  the  heat  removal would be at a line  sink at the  center of the  solidified  region. 
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Figure  13  shows  the  heat flow through  the  solidified  layer and into  the  wall  for  the 
six transients  in  figures 11 and 12. In figure  13(a) all the initial layers  are the  same 
and,  hence,  Q/2k(tf - tw) starts from  the  same value. A smal l  value of A corresponds 
to  a large f i n a l  solidified  region and,  consequently, a low  steady-state  heat flow. In fig- 
u r e  13(b),  corresponding  to  the  transients  in  figure 12, the A is the  same  for all cases 
and,  hence,  the  same  steady-state  heat flow is reached. A l a rge  A- corresponds  to a 
thin  initial  layer  and  consequently a large heat  flow at the beginning of the transient. 

(a)  Various  cooling rates starting  with same initial layer; binitial = 0.995. 

Figure 13. - Transient  heat flow through frozen layer. 
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Comparison With Quasi-Steady  Solut ion 

Figure 14 shows three different  transient  solutions  and  compares  the  layer  shapes 
with  those  computed  from  the  quasi-steady  solution.  These cases had  the  largest  devia- 
tions  that  were  obtained  between  the  transient  and  quasi-steady  solutions. It is evident 
that  the  transient  profiles are always  quite  close  to  those  predicted by the  quasi-steady 
analysis. 

As mentioned  previously,  the  series  in  the  transient  solution  converged  less  rapidly 
for  thin  initial  layers,  and  hence  transient  solutions  were not carried out for thinner  ini- 
tial layers  than  those  shown  in  figure 11. However,  thin  layers as shown by figure 8 
would be  almost  one-dimensional  except  for  the  curved  portion of the interface  near the 
edge of the  plate  x/a 1. Hence,  when starting a transient  from a thin  layer,  the  tran- 
sient  profiles  must  pass  through a se r i e s  of instantaneous  steady  states as both  the  tran- 
sient  and  quasi-steady  layers are very flat. Consequently,  the  quasi-steady  solution 
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~ I 

2.0 
Dimensionless  coordinate,  xla 

(a )   Th in   in i t ia l  layer;  binitial = 0.995; small   cool ing; A = 0.5. 

Figure 14. - Comparison of t ransient  and  quasi-steady  solut ions.  
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Transient  solut ion 
" - Quasi-steady  solution 

Dimensionless  coordinate,  xla 

(b )   Th in   i n i t i a l  layer;  binitial = 0.995; moderate  cooling; A = 0.2. 

Figure 14. - Continued. 
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I 
5.0 

should  be a good engineering  approximation  for all cases.  Thus for engineering  calcula- 
tions it is a simple  procedure  to  obtain  transient  results by use of figures 7 to  10 as de- 
scribed  in  the  section  entitled QUASI-STEADY SOLUTION. 

CONCLUSIONS 

A conformal  mapping  method  was  developed  and  applied  to a particular  case of tran- 
sient  two-dimensional  solidification.  The  configuration  in  the  physical  plane is obtained 
by a quadrature  that  involves  the  properties of the  solidified  region  in a potential  plane 
and in a temperature  derivative  plane. To perform  the  integration,  the  configurations 
in these  planes are both  mapped  conformally  into a fixed  region of an  intermediate  plane. 
Since  the  regions  in  the  potential  and  derivative  planes  depend  on  time,  the  mapping 
functions  also  contain  time  varying  quantities.  These  quantities are found by satisfying 
the  physical  conditions at the moving interface. 
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A quasi-steady  solution was also  carr ied out. In this  solution  the  profiles  pass 
through a series of instantaneous  steady-state  shapes.  The  transient  results  from  the 
general  analysis were found to  be  predicted within  engineering  accuracy by the  quasi- 
steady  solution.  The  quasi-steady  solution is provided  in  graphical  form  and  can be used 

' to  quickly  predict  the  solidification  behavior. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, August 28, 1969, 
129-01. 
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APPENDIX - COMPUTATION OF THE  INTEGRAL FOR Z(R, 0) 

To obtain  the  expression  for Z(s2,O) given by equation  (25), it is necessary  to  eval- 
uat e 1 

To this end, examine  the  form of the  integral 

where 

6 = {(I + y ) 2  - (1 - b2)(1 - y ) 2  

for a few  values of n.  Any standard  integral table shows  that  the  results of these  inte- 
grations are as follows: 

2 - b + b y +  b 2 2  
b 

for  n = 0 

f i - 4 - 2 b 2 1 n  2 - b  2 2  + b y + b f i ) + c o n s t  for  n = 1 (A41 
b2 2b3 

fi + 3(4 - 2b2)2 - 4b4 In (2 - b + b y + b f i )  + const 2 2  for  n = 2 
8b5 

These  integrations  indicate  that  the nth integral  can be expressed  in  the  form 
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n- 1 
Ldy = I& p:yr + Cn1n(2 - b2 + b2y + b f i ) +  const 

r =O 
r 1 0  

where  the p: and Cn are coefficients  that will now be found. Differentiate  equa- 
tion (A6) with respect  to y (note  that X contains y )  

r=l 2 v x  r =O 

'n + 
2 - b2 + b2y + b l h  

Multiply  through by lk and  simplify  the last term  to  obtain 

n- 1 n- 1 
yn  = X rp:yr-' + (b2y + 2 - b2) p:yr + Cnb 

r=l r =O 

Substitute  for X = (1 + y ) 2  - (1 - b )(1 - y )  = b y + (4 - 2b )r + b to  give 2 2 2 2  2 2 

n- 1 n- 1 
yn  = [b2y2 + (4 - 2b2)y + b2] rpry  n r-1 + (b 2 y + 2 - b2) p:yr + Crib 

r=l r=O 

n- 1 n- 1 n- 1 
= b2 (1 + r )pry  + (2 - b2) (1 + 2r)pry + b2 rpry  + Cnb n r+l n r  n r-1 

r=O r=O r=O 

Terms in the  same  power of y will  be  equated  to  determine  the $ and  the Cn. To 
this  end  equation (A7) is rearranged  further  to  obtain 

n  n- 1 n- 1 
yn = b2 rpr-ly + (2 - b )Po + (2 - b2) (1 + 2r)$yr + b2  rp;yr-' + Cnb n r   2 n  

r=l r=l r=l 
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which can be  put in the form 

n-  2 
+ c [b 2 n  rpr-l + (2 - b2)(1 + 2r)p; + b2(r + l)pm+l]yr + (2 - b 2 n  )Po + b2py + Cnb 

r=l 
(A81 

Equating the  terms  in  y o  gives  the Cn for n > 0 

(2 - b >Po + b2Py 
2 n  

b 
c = -  n n =  1, 2, 3, . . . 

Comparing  equations (A6) and (A3) gives  the Co as 

Equating the  coefficients of yn in equation (A8) gives 
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n 2 - b (2n - 1) 

b4 n(n - 1) 
2 

Pn-2 = - - 

For l s r s n - 2  

b 2 n  rpr-l + (2 - b )(1 + 2r)p: + b (r + l)p:+l = 0 2 2 

which  gives 

This  shows  the way in which the  coefficients  in  equations (26) and (27) were obtained. 
To  evaluate  equation (Al ) ,  insert equation (A6) to  obtain 

00 n- 1 00 

= In [ 2 - b2 + b2a2 + b G  + 4 5  an p:s22r - b 
2 n=l  r=O n=l  

This is the  form of equation (25a). 
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